Skip to main content

Difference between Spanning tree and Minimal Spanning Tree

Spanning Tree
A spanning tree of a connected, undirected graph G can also be defined as a maximal set of edges of G that contains no cycle, or as a minimal set of edges that connect all vertices.


A sub-graph T of a connected graph G(V,E) is called a Spanning Tree if T is a tree and if T includes every vertex of G i.e. V(T)=V(G).
If |V|=n and |E|=m, then the spanning tree of G must have n vertices and hence n-1 edges.
The resultant spanning ensure that the graph remain connected and further there is no circuit in it.


Two algorithms for finding a spanning tree are BFS (Breadth First Search) and DFS (Depth First Search).


Minimum Spanning Tree
minimum spanning tree (MST) or minimum weight spanning tree is then a spanning tree with weight less than or equal to the weight of every other spanning tree.


Two algorithms commonly used, Prim's algorithm and Kruskal's algorithm.


Note:- Difference between Spanning tree and Minimal Spanning Tree is that 
          Spanning Tree is applicable for Graphs without Weights.
          Minimal Spanning Tree is applicable for Weighted Graphs



Comments

Popular posts from this blog

Use Case Diagram for Online Book Store

Occurrences of each letter of alphabet in the text

Program to print a table indicating the no. of occurrences of each letter of alphabet in the text entered as command line arguments. #include<iostream> #include<string> using namespace std; int main(int argc, char *argv[]) { string str=""; static int alphabet[26]; int x; cout<<"\n\n Command-Line Argument\n"; for(int i=0;i<argc;i++) { cout<<"\n "<<argv[i]; str+=argv[i]; } for(int i=0;i<str.length();i++) { if(str[i]>='A' && str[i]<='Z') { x=((int)str[i])-65; alphabet[x]++; } else if(str[i]>='a' && str[i]<='z') { x=((int)str[i])-97; alphabet[x]++; } } //Displaying No. of occurrences of each alphabets in the command line argument cout<<"\n\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n Alphabet No. of Occurrences\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"; for(int i=0;i<26;i++)...

Linear search & Binary search using Template

Write a program to search an element from a list. Give user the option to perform Linear or Binary search. Use Template functions. #include<iostream> using namespace std; template <class T> void Lsearch(T *a, T item, int n) { int z=0; for(int i=0;i<n;i++) { if(a[i]== item) { z=1; cout<<"\n Item found at position = "<<i+1<<"\n\n"; } else if(z!=1) { z=0; } } if(z==0) cout<<"\n Item not found in the list\n\n"; } template <class T> void Bsearch(T *a, T item, int n) { int beg=0,end=n-1; int mid=beg+end/2; while((a[mid]!=item) && (n>0)) { if(item>a[mid]) beg=mid; else end=mid; mid=(beg+end)/2; n--; } if(a[mid]==item) cout<<"\n Item found at position = "<<mid+1<<"\n\n"; else cout<<"\n Item not found in the list\n\n"; } void main() { int iarr[10] = {2,42,56,86,87,99,323,546,767,886};...